A Phase 1/2 Trial of Zigakibart in IgA Nephropathy (IgAN)

Jonathan Barratt,¹ Biruh Workeneh,² Sung Gyun Kim,³ Eun Young Lee,⁴ Chun Lam,⁵ Bess Sorensen,⁶ Yuanbo Song,⁵ Zeeshan Khawaja,⁶ Laura Kooienga⁷

¹University of Leicester, Leicester, UK; ²The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Hallym University Sacred Heart Hospital, Anyang, Gyeonggi-do, Republic of Korea; ⁴Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea; ⁵Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; ⁶Chinook Therapeutics, A Novartis Company, Seattle, WA, USA; ⁷Colorado Kidney Care, Denver, CO, USA

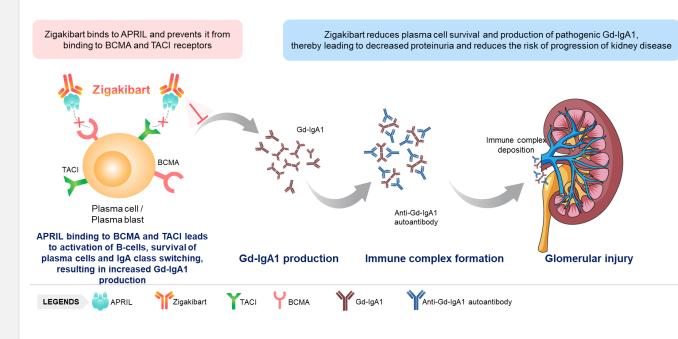
Data was previously presented at the American Society of Nephrology (ASN) Kidney Week 2024; October 23–27, 2024; San Diego, CA, USA (#FR-PO856).

Disclosures

Dr. Barratt

- Consulting and speaker fees from Alnylam, Argenx, Astellas, BioCryst, Calliditas, Chinook,
 Dimerix, Galapagos, Novartis, Omeros, Travere Therapeutics, Vera Therapeutics, Visterra
- Grant support from Argenx, Calliditas, Chinook, Galapagos, GlaxoSmithKline, Novartis, Omeros, Travere Therapeutics, Visterra
- Research projects: Argenx, Calliditas, Chinook, Galapagos, GlaxoSmithKline, Novartis, Omeros, Travere Therapeutics, Visterra
- Clinical trials: ADU-CL-19 & ALIGN (Chinook), APPLAUSE (Novartis), ARTEMIS-IGAN (Omeros), ENVISION (Visterra), NeflgARD (Calliditas), ORIGIN (Vera Therapeutics)

IgA nephropathy is the most common primary glomerulonephritis^{1,2}


- The global incidence of IgAN is 2.5/100,000/year²
- Approximately 30% of patients with proteinuria 1–2 g/d progress to kidney failure within as little as 10 years³
- Emerging evidence suggests that even patients with low levels of persistent proteinuria (<1 g/d) are at risk of kidney failure⁴
- IgAN has a heterogeneous clinical presentation requiring an individualized treatment approach
- eGFR stabilization is an important treatment goal in the context of IgAN prognosis; even a decline of as little as 1 mL/min/1.73 m² per year could result in ~40% of adult patients younger than 50 years at diagnosis reaching kidney failure/death within their expected lifetime⁴

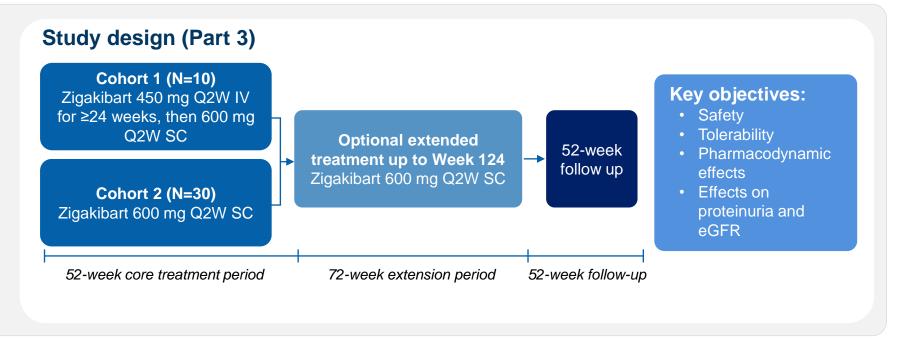
Zigakibart is a humanized monoclonal antibody that binds and blocks APRIL

Zigakibart

- Zigakibart is a humanized monoclonal antibody targeting APRIL
- APRIL is a TNF superfamily cytokine that drives IgA class switching and survival of IgA-secreting plasma cells in IgAN, leading to elevated Gd-IgA1 production and immune complex deposition in the mesangium^{1–3}
- Promotion of IgA class switching by APRIL, survival of IgA-secreting plasma cells, and excess production of Gd-IgA1 is considered the initial "hit" in the multi-hit pathogenesis of IgAN^{4,5}
- By decreasing Gd-IgA1 and preventing pathogenic immune complex formation, blocking APRIL with zigakibart is potentially disease-modifying^{1,6}
- Here we present the results from Part 3 of the Phase 1/2 trial of zigakibart in patients with IgAN

Schematic representation of the mechanism of action of zigakibart in IgAN

APRIL, A-PRoliferation-Inducing Ligand; BCMA, B-cell maturation antigen; Gd-lgA1, galactose-deficient IgA1; IgAN, IgA nephropathy; TACI, transmembrane activator and CAML interactor; TNF, tumour necrosis factor.


1. Suzuki H, et al. Semin Immunopathol. 2021;43:669-678; 2. Zhai Y, et al. Medicine. 2016;95:e3099; 3. McCarthy DD, et al. J Clin Invest. 2011;121:3991-4002; 4. Boyd JK, et al. Kidney Int. 2012;81:833–43; 5. Yeo SC and Barratt J. Clin Kidney J. 2023;16(Suppl 2):ii9–ii18; 6. Suzuki H. Clin Exp Nephrol. 2019;23:26-31.

ADU-CL-19 is an ongoing Phase 1/2 trial of zigakibart (NCT03945318)

- Parts 1 and 2 (completed) assessed single- and multiple-ascending doses of zigakibart, respectively, in healthy volunteers (not reported here)
- Part 3 study design is shown below (Figure)
 - Treatment: Patients received zigakibart 450 mg Q2W IV, transitioning to 600 mg Q2W SC at ≥24 weeks (Cohort 1) or 600 mg Q2W
 SC (Cohort 2). Both cohorts will be treated for up to 124 weeks

Key eligibility criteria (Part 3)

- Patients ≥18 years with biopsy-proven IgAN
- Total urine protein ≥0.5 g/24 h or UPCR ≥0.5 g/g
- eGFR ≥30 mL/min/1.73 m², and
- On stable/optimized dose of RASi for ≥3 months prior to screening (or RASi intolerant)

eGFR, estimated glomerular filtration rate; IgAN, immunoglobulin A nephropathy; IV, intravenous; Q2W, every 2 weeks; RASi, renin-angiotensin system inhibitor; SC, subcutaneous; UPCR, urine protein—creatinine ratio. Barratt J et al. Poster presented at: the American Society of Nephrology (ASN) Kidney Week 2024; October 23–27, 2024; San Diego, CA, USA (#FR-PO856).

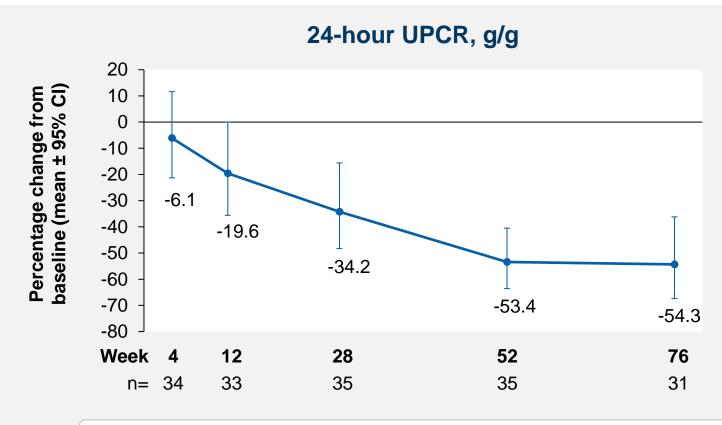
Baseline demographic and disease characteristics were similar between cohorts

- Overall, 40 patients were enrolled (n=10 [Cohort 1], n=30 [Cohort 2]; Table)
 - Median age was 38.5 years, 70% were male, 60% were White, and 33% were Asian
- Demographic and clinical characteristics were similar between the two cohorts, except that all patients in Cohort 1 were White
- The median (min, max) duration of treatment was 102.0 (2.0, 155.0) weeks. This encompassed the 52-week core treatment period and optional extension treatment

Characteristics	Cohort 1 (N=10)	Cohort 2 (N=30)	Overall (N=40)
Age, years (min, max)	38.5 (27.0, 59.0)	38.5 (21.0, 74.0)	38.5 (21.0, 74.0)
Sex, male, n (%)	9 (90.0)	19 (63.3)	28 (70.0)
Race , n (%)			
White	10 (100)	14 (46.7)	24 (60.0)
Asian	0	13 (43.3)	13 (32.5)
Black/African American	0	1 (3.3)	1 (2.5)
Missing	0	2 (6.7)	2 (5.0)
Time from biopsy to enrollment, years, median (min, max)	2.1 (0.2, 7.7)	3.1 (0.1, 8.3)	2.6 (0.1, 8.3)
eGFR, mL/min/1.73 m ² , median (min, max)	69.0 (30.0, 122.0)	64.0 (30.0, 131.0)	66.5 (30.0, 131.0)
24-h urine protein excretion, g/d, median (min, max)	1.2 (0.7, 6.5)	1.1 (0.3, 7.0)	1.1 (0.3, 7.0)
24-h UPCR, g/g, median (min, max)	0.6 (0.4, 4.6)	0.8 (0.2, 3.2)	0.7 (0.2, 4.6)

Data cutoff date: June 21, 2024. Safety analysis set. Time from IgAN biopsy to enrollment = (treatment start date – IgAN biopsy date)/365.25. Missing day part of the IgAN biopsy date was imputed as the first day of the month. Screening visit was used as baseline for eGFR.

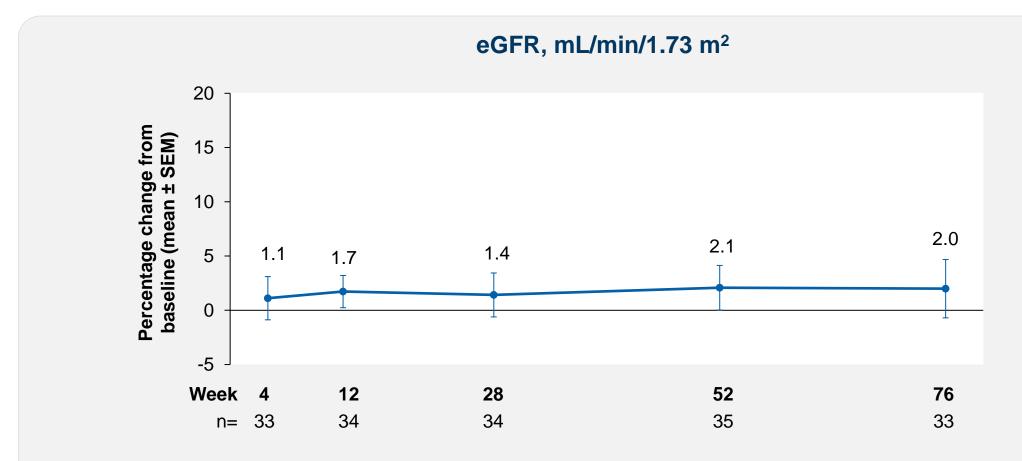
Zigakibart was well-tolerated


- No TEAEs leading to study drug discontinuation or deaths
- TEAEs were observed in 34 (85%) patients, most commonly infections (78%) of Grade 1 or 2 in severity
 - Two patients experienced three Grade 3 infections that were not treatment-related
 - One patient experienced seven infections deemed treatment-related
- One serious TEAE of amnesia occurred that was not study drug-related and did not result in interruption of the study drug
- IgG <3.0 g/L (clinical laboratory finding) occurred in two patients; both patients entered study on Day 1 with IgG levels below the LLN and the events occurred with concurrent administration of steroids after 28* and 88 weeks of zigakibart treatment. No infections occurred while IgG was <3.0 g/L

AE category (Ove	rall N=40)	n (%)
	Patients with any TEAE	
TEAEs	Patients with serious TEAE	1 (2.5)
	Patients with any infection and infestation TEAE	31 (77.5)
	Infection TEAE occurring in n ≥2 patients	
	COVID-19	18 (45.0)
	Upper respiratory tract infection	13 (32.5)
	Influenza	6 (15.0)
	Bronchitis	5 (12.5)
	Nasopharyngitis	4 (10.0)
	Sinusitis	4 (10.0)
	Pharyngitis streptococcal	3 (7.5)
	Urinary tract infection	3 (7.5)
	Asymptomatic COVID-19	2 (5.0)
	Ear infection	2 (5.0)
	Gastroenteritis viral	2 (5.0)
	Rhinitis	2 (5.0)
	Viral upper respiratory tract infection	2 (5.0)
	Patients with any treatment-related TEAE	11 (27.5)
Too a too a set seele to d	Treatment-related TEAEs occurring in n ≥2 patients	
Treatment-related TEAEs	Injection-site erythema	5 (12.5)
	Fatigue	3 (7.5)
	Injection-site pain	2 (5.0)

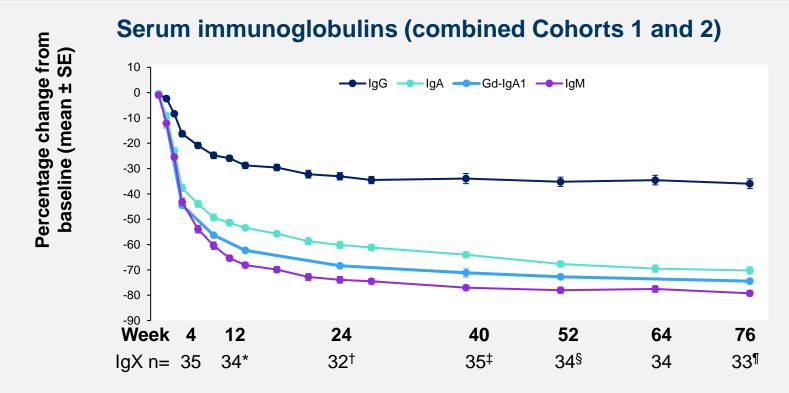
Data cutoff: June 21, 2024. A TEAE is defined as an adverse event occurring after the first dose of study drug through to the end of study visit. Safety analysis set (N=40).

^{*}The patient received zigakibart for 28 weeks but was discontinued from the study at that point due to a protocol violation. Subsequently, the patient was treated with steroids and, at the 12-week follow-up (while on steroids), was found to have an IgG <3.0 g/L. LLN, lower limit of normal; IgG, Immunoglobulin G; TEAE, treatment-emergent adverse event. Barratt J et al. Poster presented at: the American Society of Nephrology (ASN) Kidney Week 2024; October 23–27, 2024; San Diego, CA, USA (#FR-PO856).


A rapid and sustained reduction in proteinuria was observed in patients with IgAN across a wide range of baseline proteinuria levels (range: 0.2–4.6 g/g)

At Week 76, 24-hour UPCR was reduced by 54% from baseline

Data cutoff: June 21, 2024. Biomarker analysis set (N=35). Data presented are geometric mean percentage change from baseline ± 95% CI for UPCR. Baseline is defined as the last non-missing value collected before receiving the first dose of the study drug. All post-baseline assessments were considered, scheduled, and unscheduled.


eGFR remained stable with zigakibart treatment over time in patients across a range of baseline eGFR levels (range: 30–131 mL/min/1.73 m²)

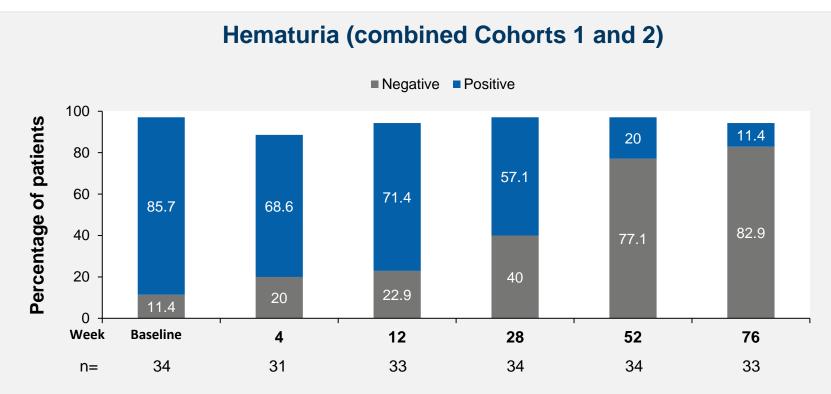
Data cutoff: June 21, 2024. Biomarker analysis set (N=35). Data presented are mean percentage change from baseline ± SEM for eGFR. Baseline is defined as the last non-missing value collected before receiving the first dose of the study drug. All post-baseline assessments were considered, scheduled, and unscheduled.

Treatment with zigakibart resulted in rapid and sustained reductions in IgA, Gd-IgA1, and IgM levels


• Treatment with zigakibart resulted in rapid and sustained reductions in IgA, Gd-IgA1, and IgM levels, which were reduced by 70%, 74%, and 79% from baseline, respectively, through Week 76. Reduction in IgG was mild to modest (36%)

Data cutoff: June 21, 2024. *n=33 for IgA and Gd-IgA1; †n=31 for IgM; ‡n=33 for Gd-IgA1; §n=33 for IgM; ¶n=18 for Gd-IgA1. Immunoglobulin biomarker analysis set used for immunoglobulin analyses (N=35). Ig reflect pre-dose measurements. Baseline is defined as the last non-missing value collected before receiving the first dose of the study drug. All post-baseline assessments were considered, scheduled, and unscheduled.

Circulating total lymphocyte counts remained stable through to Week 76



Data cutoff: June 21, 2024. Baseline is defined as the last non-missing value collected before receiving the first dose of the study drug. All post-baseline assessments were considered, scheduled, and unscheduled. Safety analysis set (N=40) used for lymphocyte count.

By Week 76, 83% of the patients had negative hematuria

- Overall, 30 of 35 (85.7%) patients had hematuria at baseline
- By Week 76, only 4 (11.4%), patients had positive hematuria assessed by dipstick test

§Positive or negative hematuria determined by dipstick analysis and percentages calculated based on the biomarker analysis set (N=35). Data cutoff: June 21, 2024. Baseline is defined as the last non-missing value collected before receiving the first dose of the study drug. All post-baseline assessments were considered, scheduled, and unscheduled.

Conclusions

- Zigakibart, an anti-APRIL monoclonal antibody, was well-tolerated with no AEs leading to study drug discontinuation or deaths
- Treatment with zigakibart led to:
 - Rapid reduction in serum IgA, Gd-IgA1, and IgM levels, demonstrating a strong PD effect
 - Sustained, clinically meaningful reductions in proteinuria and eGFR stabilization in patients with IgAN through 76 weeks of treatment
- The on-going global Phase 3 BEYOND study (NCT05852938) is also evaluating the efficacy and safety of zigakibart in adult patients with IgAN

Acknowledgements

- This study was sponsored by Chinook Therapeutics, A Novartis Company
- Medical writing assistance for this oral presentation was provided by Nupur Chaubey (Novartis India)