ALIGN Subgroup Analyses: Clinically Meaningful UPCR Reductions Seen across Subgroups

Hiddo J.L. Heerspink¹, Meg Jardine², Donald E. Kohan³, Richard A. Lafayette⁴, Adeera Levin⁵, Adrian Liew⁶, Hong Zhang⁷, Todd Gray⁸, Ronny Renfurm⁹, Jonathan Barratt¹⁰

¹Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; ²NHMRC Clinical Trials Centre, the University of Sydney, Sydney, Australia; ³Division of Nephrology, University of Utah Health, Salt Lake City, UT, USA; ⁴Stanford University, Stanford, CA, United States; ⁵The University of British Columbia, Vancouver, BC, Canada; ⁶Mount Elizabeth Novena Hospital, Singapore, Singapore; ⁷Peking University First Hospital, Beijing, China; ⁸Chinook Therapeutics, A Novartis Company, Seattle, WA, United States; ⁹Novartis Pharma AG, Basel, Switzerland; ¹⁰University of Leicester, Leicester, Leicestershire, United Kingdom.

KEY FINDINGS & CONCLUSIONS

- Atrasentan was superior to placebo in reducing proteinuria at Week 36, the primary endpoint (pre-specified interim analysis) of the ALIGN Phase 3 global clinical trial
- Sensitivity analyses of the primary endpoint demonstrated the robustness of these results
- Preliminary findings for an exploratory SGLT2i stratum were consistent with the main stratum
- Clinically meaningful proteinuria reductions were observed with atrasentan in all subgroups regardless of baseline demographic or disease characteristics
- Atrasentan was well tolerated with a favorable safety profile
- Results for the key secondary endpoint, eGFR change from baseline at Week 136 from the main stratum, will be presented after all patients have completed the double-blind study period
 - After Week 136, participants are offered the option to receive atrasentan in an open-label extension study

This study is sponsored by Novartis Pharma AG Poster presented at the ISN World Congress of Nephrology 2025 | 6-9 February 2025 | New Delhi, India. Previously presented at American Society of Nephrology (ASN) Kidney Week 2024 | 23-27 October 24 San Diego, CA, USA

INTRODUCTION

- IgA nephropathy (IgAN) is a heterogenous, progressive, rare kidney disease¹⁻³
- Despite current standard of care, up to 50% of patients with IgAN develop kidney failure within 10–20 years of diagnosis. Even patients with proteinuria <1 g/day have a 30% risk of progressing to kidney failure within 10 years of diagnosis^{3,4}
- Endothelin pathway dysregulation is associated with IgAN pathophysiology.⁵
- Endothelin A (ETA) receptor activation drives mesangial cell activation, kidney inflammation and fibrosis, and proteinuria, all hallmarks of IgAN.5
- Atrasentan is a potent and highly selective ETA receptor antagonist that demonstrated clinically meaningful reductions in proteinuria as well as a favorable safety and tolerability profile in patients with IgAN in the Phase 2 AFFINITY trial.6
- ALIGN (NCT04573478) is an ongoing Phase III, randomized, double-blind, placebo-controlled study comparing the efficacy and safety of atrasentan with placebo in patients with IgAN on optimized supportive care. 7,8
- Presented are the Week 36 pre-specified interim analysis (primary endpoint) results of the ALIGN study.

METHODS

Study design

Patients with biopsy-proven IgAN and proteinuria of ≥1 g/day were randomized to receive atrasentan 0.75 mg or placebo orally once daily for 132 weeks while on a stable dose of maximally tolerated/optimized RASi (Figure 1).

Key study endpoints

- **Primary endpoint:** change in proteinuria (UPCR based on 24-hour urine collection) from baseline to Week 36 in the main stratum.
- Subgroup analyses: change in UPCR by demographic (gender, age, race, ethnicity and region) and baseline characteristics (baseline UPCR, BP, eGFR and diuretic use).
- **Key secondary endpoint:** change from baseline to Week 136 in eGFR in the main stratum.
- Exploratory endpoint: change in UPCR from baseline to Week 36 in the SGLT2i stratum
- **Safety endpoints:** type, incidence, severity, seriousness, and relatedness of TEAE and TEAESI

Figure 1. Study design

Subgroup

Overall

Gender

Age

Race

Ethnicity

Region

Region

Screening

UPCR

UPCR

Blood

eGFR

Pressure

Diuretic Use

Figure © NEJM 2024.8

Baseline

Male

Female

< 65 years

≥ 65 years

Hispanic or Latino

Not Hispanic or Latino

White

Other

Asia

Non-Asia

Europe

North America

Latin America

Asia-Pacific

< 2000 mg/g

≥2000 mg/g

<1500 mg/g

≥1500 mg/g

Yes

No

≤45 mL/min/1.73m²

>60 mL/min/1.73m²

SBP ≥140 or DBP ≥90 mmHg

>45 - ≤60 mL/min/1.73m²

SBP <140 and DBP <90 mmHg

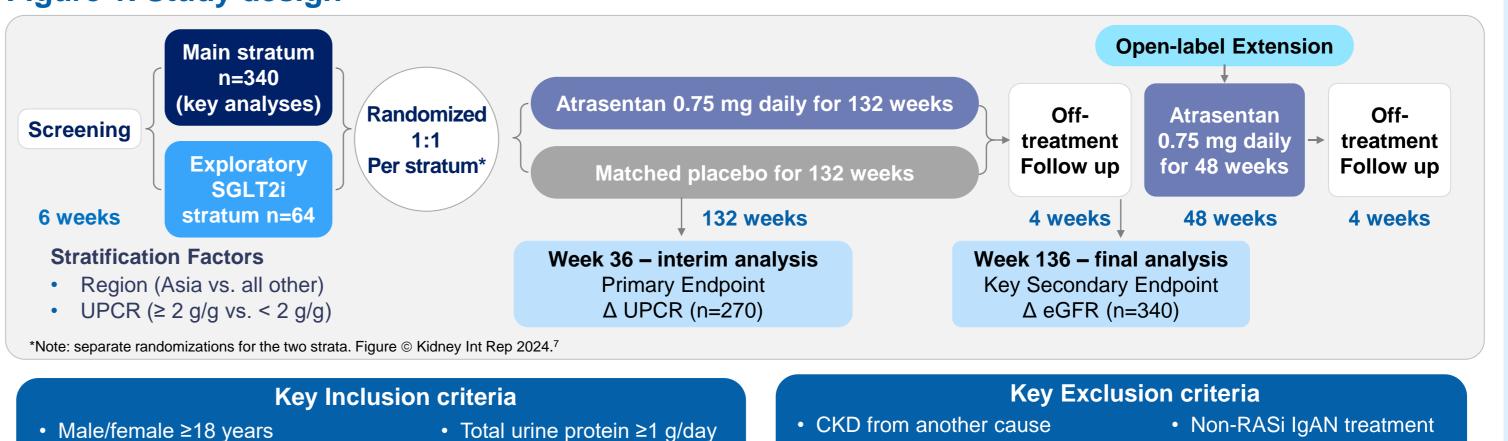


Figure 3. 24-Hour UPCR Week 36 percentage change from baseline in LS means by

Atrasentan

(N=135)

132

80

52

121

29

100

70

62

105

111

Based on MMRM models and subgroup analysis of UPCR methods. Separate MMRM model fit for each subgroup variable.

UPCR based on 24-hour urine collection. Variables are baseline values unless otherwise specified

Placebo

(N=135)

132

76

56

126

24

107

61

71

26

23

12

71

100

32

57

105

51

53

116

-36.1

-36.1

_36.4

-37.0

-36.7

Favors Atrasentan

-31.4

-33.4

-41.1

-27.0

• Total urine protein ≥1 g/day Biopsy-proven IgAN • eGFR ≥30 mL/min/1.73m² · On optimized/maximally tolerated RASi

subgroups: MMRM analysis primary efficacy set

 RPGN or IgA vasculitis BNP >200 pg/mL or Hgb <9g/dL History of organ transplantation • Nephrotic syndrome

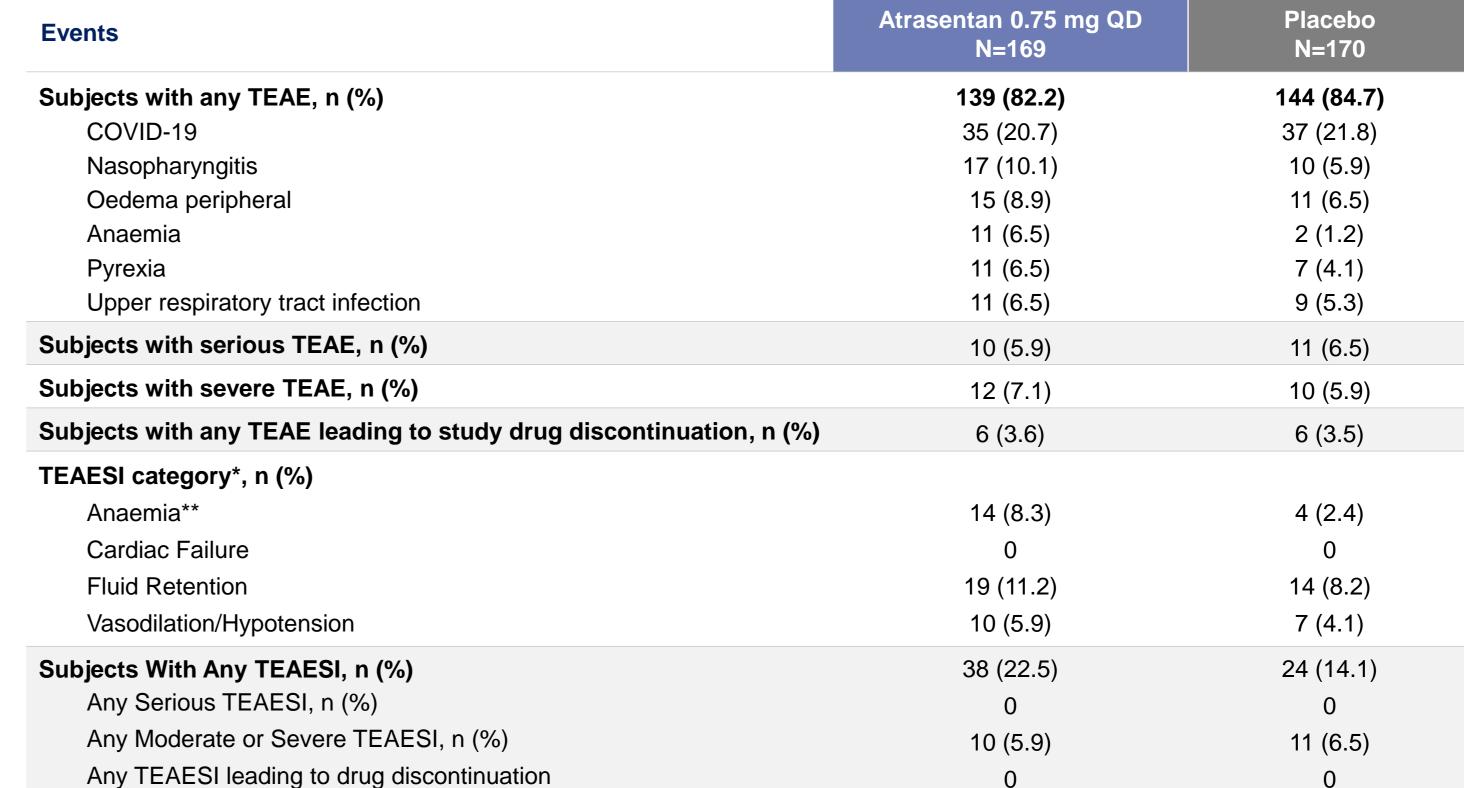
Difference in LS Means and 95% CI

Favors Placebo

Percent

RESULTS

- In total 653 patients were screened, of whom 404 met the eligibility criteria (340 patients were recruited into the main stratum and 64 into the exploratory SGLT2i stratum) and were randomized. Results from the first 270 patients who were randomized in the main stratum and completed 36 weeks of the trial are reported here.
- Demographics and patient characteristics were well balanced at baseline (Table 1).


Table 1. Demographic and clinical characteristics of the first 270 patients in the main stratum

Parameters	Atrasentan 0.75 mg QD (N=135)	Placebo (N=135)	Total (N=270)
Age, mean (SD)	45.7 (12.9)	44.1 (11.0)	44.9 (12.0)
Female, n (%)	54 (40.0)	57 (42.2)	111 (41.1)
Region, n (%) Asia Non-Asia	64 (47.4) 71 (52.6)	63 (46.7) 72 (53.3)	127 (47.0) 143 (53.0)
Duration of disease, years, mean (SD)	5.1 (5.4)	6.1 (6.0)	5.6 (5.7)
Systolic BP, mmHg, mean (SD)	125.4 (13.3)	122.9 (12.3)	124.2 (12.9)
Diastolic BP, mmHg, mean (SD)	79.6 (9.9)	78.7 (9.0)	79.1 (9.4)
24-hr total UPE, mg/day, median (Q1, Q3)	1847 (1314, 2776)	1851 (1329, 2550)	1848 (1328, 2664)
24-hr UPCR, mg/g, median (Q1, Q3)	1436 (1007, 1989)	1429 (1101, 1918)	1432 (1063, 1956)
eGFR, mL/min/1.73m ² , mean (SD)	58.3 (23.8)	59.5 (24.4)	58.9 (24.0)
RASi usage at baseline, n (%)			
ACEi use only ARB use only	37 (27.4) 97 (71.9)	37 (27.4) 95 (70.4)	74 (27.4) 192 (71.1)
Table © NEJM 2024.8			

Efficacy

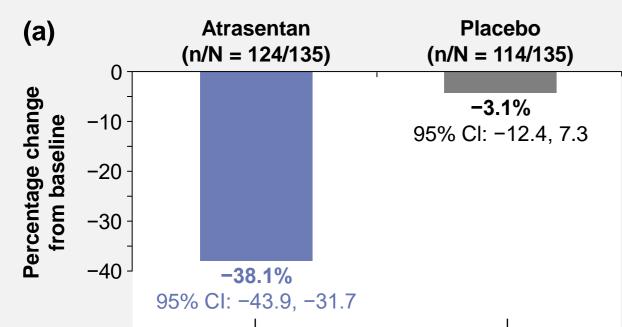

- Atrasentan showed a statistically significant and clinically meaningful proteinuria reduction of 36.1% (95% CI: 26.4%, 44.6%; p<0.0001) relative to placebo, after 36 weeks of treatment (**Figure 2**)
- Sensitivity analysis of the primary endpoint including all 24 hr UPCR values regardless of restricted medication use, chronic dialysis or kidney transplant was consistent with the primary analysis; relative mean percentage change in UPCR from baseline for atrasentan compared with placebo: -36.7 (95% CI: -44.8, -27.3). levels of proteinuria, eGFR, BP or diuretic usage (Figure 3)
- Exploratory SGLT2i stratum: relative mean percentage change in UPCR from baseline after 36 weeks of treatment between atrasentan and placebo was -37.4 (95% CI:-57.2, -8.5).

Table 2. Adverse events and adverse events of special interest in the main stratum Proteinuria reduction was of similar magnitude regardless of age, sex, race, ethnicity or region, and baseline

*AESIs were identified using FDA Medical Query category **No patient with anaemia required blood transfusion; Table © NEJM 2024.8

Figure 2. Change in 24-Hour UPCR at a) Week 36 and b) over time in the main stratum

-36.1% (95% CI: -44.6, -26.4), p<0.0001

-3.1% (b) Placebo 95% CI: _12.4, 7.3 -20 -38.1% 95% CI: -43.9, -31.7 Number of Subjects 125 124 126 114 24 36 Weeks since randomization

Based on a Mixed Model Repeated Measures analysis with the change from baseline of natural log UPCR at each post-baseline timepoint as outcomes; UPCR values are censored (excluded) for subjects with intercurrent events (i.e., restricted medication use, chronic dialysis, kidney transplant) beginning at the start date of the earliest event. Missing UPCR values implicitly imputed assuming Missing at Random. The N's in the figure reflect the number of subjects whose data at that timepoint are included in the MMRM analysis; Subjects with no post-baseline data are excluded at baseline. Figure © NEJM 2024.8

Safety

- Overall, atrasentan was well tolerated with a favorable safety profile (Table 2).
- Most TEAESIs were mild in severity; there were no serious TEAESIs. There were no TEAESIs that lead to study drug discontinuation (Table 2).

Figure 1 reproduced with permission from Heerspink HJL et al. *Kidney Internal Rep.* 2024. Figures 2 & 3; Tables 1 & 2 reproduced with permission from Heerspink HJL et al. NEJM 2024. doi:10.1056/NEJMoa2409415 **Acknowledgements** This study was sponsored by Chinook Therapeutics, A Novartis Company. Medical writing assistance for this poster was provided by Shivani Vadapalli and design support by Venkata

1. Rizk DV et al. Front Immunol. 2019;10:504; 2. Lai KN et al. Nat Rev Dis Primers. 2016;2:16001; **3**. Xie J et al. *PLoS One*. 2012;7(6):e38904; **4**. Pitcher D et al. *Clin J Am Soc* Nephrol. 2023;18(6):727-738.; **5**. Kohan DE, et al. *Kidney Int Rep.* 2023;8(11):2198–2210; 6. Rastogi A, et al. ASN Kidney Week 2022; Poster Th-PO497; 7. Heerspink HJL et al. Kidney Internal Rep. 2024; 10 (1): 217-226; 8. Heerspink HJL et al. NEJM 2024. doi: 10.1056/NEJMoa2409415

Setty Ch (both Novartis Healthcare Pvt Ltd, India).

HJL: consulting fees from Alexion, AstraZeneca, Bayer, Boehringer Ingelheim, Chinook, CSL Behring, Dimerix, Eli Lilly, Gilead, Janssen, Merck, Novartis, Novo Nordisk, Roche, and Travere; research support: AstraZeneca, Boehringer Ingelheim, Janssen, and Novo Nordisk; honoraria from AstraZeneca and Novo Nordisk; travel expenses from Eli Lilly. MJ: is responsible for research projects that have received funding from Amgen, Baxter, CSL, Dimerix, Eli Lilly, Gambro, Kensana and MSD; has received fees for Advisory, Steering Committee and/or Scientific Presentations from Akebia, Amgen, Astra Zeneca, Baxter, Bayer, Boehringer Ingelheim, Cesas Medical, Chinook, CSL, Janssen, Medcon International, Medscape, MSD, Novo Nordisk, Occurx, Roche and Vifor; with any consultancy, honoraria or travel support directed to her institution. DEK: consulting fees from AstraZeneca, consulting fees and honoraria from Chinook and Travere. RL: fees from Alexion, Aurinia, Beigene, ChemoCentryx, Calliditas, GlaxoSmithKline, HiBio, Novartis Omeros, Otsuka, Roche, Travere and Vera; research funding from Apellis, Calliditas, Chinook, Genetech, NIH, Omeros, Otsuka, Roche, Travere and Vera. AL: is a member of a steering committee for Chinook/Novartis AL reports employment with The Kidney & Transplant Practice Pte Ltd; consultancy for Alexion, Alnylam, Arrowhead, AstraZeneca, Baxter Healthcare, Bayer AG, BioCryst, Boehringer-Ingelheim, Chinook, Dimerix, Eledon Pharmaceuticals, Fresenius Medical Care, George Clinical, GlaxoSmithKline, Kira, Prokidney, Otsuka, Vera, Visterra Inc, Zai Lab Co. Ltd; has received speaker's honorarium from AstraZeneca, Baxter Healthcare, Boehringer-Ingelheim, Chinook, Fresenius Medical Care, Otsuka, Vera; and has served as a member of Data Safety and Monitoring Committee for Dimerix and Zai Lab Co. Ltd.; HZ: employee of Peking University First Hospital; consultancy fees from Calliditas, Chinook, Novartis, Omeros, and Otsuka; participated in symposia or panel discussions and received honoraria for scientific presentations from Novartis and Omeros. TG: ex-employee of Chinook, a Novartis company. RR: employee of Novartis Pharma AG. JB: consulting and speaker fees from Alnylam, Argenx, Astellas, BioCryst, Calliditas, Chinook, Dimerix, Galapagos, Novartis, Omeros, Travere, Vera, Visterra; grant support and research projects from Viterra Argenx, Calliditas, Chinook, Galapagos, GlaxoSmithKline, Novartis, Omeros, Travere, Visterra; and clinical trials: ADU-CL-19 & ALIGN (Chinook), APPLAUSE (Novartis), ARTEMIS-IGAN (Omeros), ENVISION (Visterra), NeflgARD (Calliditas), ORIGIN (Vera Therapeutics)

ACEi, angiotensin-converting enzyme inhibitor; AESI: adverse event of special interest; ARB, angiotensin receptor blocker; BP, blood pressure; CI, confidence interval; eGFR, estimated glomerular filtration rate; IgAN, IgA nephropathy; LS, least squares; QD, once daily; MMRM, Mixed Model Repeated Measures; RASi, renin-angiotensin system inhibitor; SD, standard deviation, SGLT2i, sodium glucose transporter-2; TEAE, treatment emergent adverse events; TEAESI, treatment emergent adverse event of special interest; UPCR, urine protein-creatine ratio;

UPE, urine protein excretion

